胡丞杨 副研究员
哲学博士 材料科学与工程 副研究员
2021.10- 大发welcome登录入口,高性能钢铁材料及其应用省部共建协同创新中心,
副研究员,硕士生导师
2019.01-2021.08 美国德克萨斯大学埃尔帕索分校,冶金、材料及生物医药工程系,
博士研究生、研究助理
2015.09-2018.06 大发welcome登录入口,金属材料工程系,硕士研究生
2011.09-2015.06 大发welcome登录入口,英才计划(冶金类拔尖创新人才培育试点班),本科
邮箱:huchengyang@wust.edu.cn
地址:武汉市青山区和平大道947号 大发welcome登录入口 武钢楼421室
邮编:430081
主要从事“高强度微合金钢”和“相逆转变诱导纳米晶/超细晶钢铁材料”的基础应用研究,在材料理论和应用方面取得了一系列创新性的成果,已发表SCI收录论文15篇,授权中国发明专利3项。以第一或通讯作者身份,在《Wear》、《Journal of the Mechanical Behavior of Biomedical Materials》等国际权威期刊发表SCI论文8篇,其中中科院二区及以上论文3篇。与重庆大学、美国田纳西大学(University of Tennessee, Knoxville)、德克萨斯大学埃尔帕索分校合作,培养研究生。
奥氏体合金
高强高韧纳米结构钢铁材料
金属基生物材料
[1] 低密度有机-无机材料。美国国防部项目。项目主要负责人
[2] 高强高韧纳米结构材料中晶粒结构和变形行为与断裂机制的关系。 美国国家科学基金(DMR1602080) 项目主要负责人
[3] 含铌钢筋、结构梁及型材样品的性能检验。CBMM NORTH AMERICA。 项目主要负责人
[4] 高温和强磁场协同作用下Fe基材料中合金碳化物析出的热力学机制。 中国国家自然科学基金重点项目(U1532268) 项目主要参与人
[5] 纳米晶/超细晶奥氏体不锈钢奥氏体稳定性与变形机理的关联性研究。 中国国家自然科学基金(51501134) 项目主要参与人
获奖与兼职
[1] 美国TMS(The Minerals, Metals & Materials Society)协会会员
[2] 美国ASM(American Society for Metals, ASM International)协会会员
[3] 巴西ABM(Associação Brasileira de Metalurgia, Materiais e Mineração)协会会员
[4] Steel Research International 等国际权威期刊审稿人
[5] Freeport McMoRan Tuition Scholarship (2019)
[6] “中信-CBMM付俊岩铌钢”研究生奖学金(2017)
[7] 湖北省优秀学士学位论文(2015)
1 期刊论文
[1] Grain refinement strengthening mechanism of an austenitic stainless steel: critically analyze the impacts of grain interior and grain boundary. Journal of Materials Research and Technology, 2022, 17: 2999-3012. (SCI收录,共同通讯作者)
[2]The synergistic effect of grain boundary and grain orientation on micro-mechanical properties of austenitic stainless steel,Journal of the Mechanical Behavior of Biomedical Materials,2021, 118: 104473. (SCI收录,第一作者)
[3] On the impacts of grain refinement and strain-induced deformation on three-body abrasive wear responses of 18Cr–8Ni austenitic stainless steel,Wear, 2020, 446-447: 203181.(SCI收录,第一作者)
[4] The significance of phase reversion-induced nanograined/ultrafine-grained structure on the load-controlled deformation response and related mechanism in copper-bearing austenitic stainless steel, Journal of the Mechanical Behavior of Biomedical Materials, 2020, 104: 103666.(SCI收录,第一作者)
[5] A Thermodynamic Analysis of Strengthening Mechanisms and Process-Structure-Property Relationships in Ti-Nb-Mo High-Strength Ferritic Alloy,Journal of Materials Engineering and Performance, 2021, 30: 2946-2954. (SCI收录,第一作者)
[6] Effect of Zr-deoxidation on microstructure and mechanical behavior of microalloyed heavy plates with low impurity content,Journal of Iron and Steel Research International, 2021, 28: 190-200. (SCI收录,第一作者)
[7] Effects of different deoxidization methods on high-temperature physical properties of high-strength low-alloy steels. High Temperature Materials and Processes, 2020, 39 (1): 157-163. (SCI收录,共同通讯作者)
[8] Effect of microadditives on center segregation and mechanical properties of high-strength low-alloy steels. Metallurgist, 2016, 60(7): 888-895. (SCI收录,第一作者)
[9] Insight in the impact of pre-deformation on structure - deformation - property relationship in Cr-Mn-N stainless steel. Materials Characterization, 2022, 184: 111689. (SCI收录)
[10] Insight into the effect of Nb microalloying on the microstructure-property relationship of a novel wire rod. Journal of Materials Research and Technology, 2022, 16: 276-289. (SCI收录)
[11] Effect of retained austenite on impact toughness and fracture behavior of medium carbon submicron-structured bainitic steel. Journal of Materials Research and Technology, 2021, 14: 1021-1034. (SCI收录)
[12] Effect of nickel on hardening behavior and mechanical properties of nanostructured bainite-austenite steels. Materials Science and Engineering: A, 2021, 817: 141410. (SCI收录)
[13] Improving the yield strength of an antibacterial 304Cu austenitic stainless steel by the reversion treatment. Materials Science and Engineering: A, 2020, 793: 139885. (SCI收录)
[14] On the mechanical behavior of austenitic stainless steel with nano/ultrafine grains and comparison with micrometer austenitic grains counterpart and their biological functions. Journal of the mechanical behavior of biomedical materials, 2020, 101: 103433. (SCI收录)
[15] The Development of Steel Band Feeding for HSLA Heavy Plates. Metallurgist, 2016, 59(11): 1238-1243. (SCI收录)
[16] 形变强化和逆相变细晶强化对Fe-18Cr-8Ni钢组织和性能的影响. 钢铁研究学报, 2022, 34(2): 162-168.
2 会议报告
[1] The XIV International Scientific Congress Winter Session Machines, Technologies, Materials 2017.03.15-18, Borovets, Bulgaria
[2] The II International Scientific Conference High Technologies, Businsess, Society 2017 2017.03.13-16, Borovets, Bulgaria
3 专利
[1] 一种用于钢包精炼的底吹微细氩气泡的透气砖, ZL201610400754.5 (发明专利,已授权)
[2] 一种提高316LN奥氏体不锈钢力学性能的方法, ZL201610482610.9 (发明专利,已授权)
[3] 一种用于中间包精炼的底吹微细氩气泡的透气砖,ZL201610400753.0 (发明专利,已授权)
[4] 一种用于钢包精炼的底吹透气砖,ZL201620550570.2 (已授权)
[5] 一种用于中间包精炼的底吹透气砖, ZL201620550566.6 (已授权)